Target classification using machine learning approaches with applications to clinical studies
نویسندگان
چکیده
منابع مشابه
Study on Cardiovascular Disease Classification Using Machine Learning Approaches
The diagnosis of heart disease which depends in most cases on complex grouping of clinical and pathological data. Due to this complexity, the interest increased in a significant amount between the researchers and clinical professionals about the efficient and accurate heart diseaseprediction. In case of heart disease, the correct diagnosis in early stage is important as time is very crucial. Nu...
متن کاملContrasting Machine Learning Approaches for Microtext Classification
The goal is classification of microtext: classifying lines of military chat, or posts, which contain items of interest. This paper evaluates non-linear statistical data modeling techniques, and compares with our previous results using several text categorization and feature selection methodologies. The chat posts are examples of 'microtext', or text that is generally very short in length, semi-...
متن کاملApproaches to machine learning
The field of machine learning strives to develop methods and techniques to automate the acquisition of new information, new skills, and new ways of organizing existing information. In this article, we review the major approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, learning search methods, conceptual clustering, and language acquisition...
متن کاملAutomation of Android Applications Testing Using Machine Learning Activities Classification
Mobile applications are being used every day by more than half of the world’s population to perform a great variety of tasks. With the increasingly widespread usage of these applications, the need arises for efficient techniques to test them. Many frameworks allow automating the process of application testing, however existing frameworks mainly rely on the application developer for providing te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics & Biostatistics International Journal
سال: 2020
ISSN: 2378-315X
DOI: 10.15406/bbij.2020.09.00305